softening and hardening transitions in ferroelectric pb(zr,ti)o3 ceramics

نویسنده

  • Maxim MOROZOV
چکیده

Hysteretic and nonlinear dielectric behaviour in ferroelectric ceramics has been of interest since 1950s, when these materials found application in various electronic devices. Presently, these phenomena concern with important areas of science, technology and engineering. In particular, nonlinearity and hysteresis are the key factors in performance, precision and accuracy of modern devices. Many theoretical and experimental studies have been aimed at understanding the origins of hysteresis and nonlinearity in ferroelectrics. Nowadays, there are several models that describe major contributions to nonlinearity and hysteresis on phenomenological, microscopical or statistical levels. These models have a limited area of applicability due to the complexity of physical processes occurring in real materials. Empirically, hysteresis and nonlinearity in ferroelectrics can be controlled by softening and hardening of the material. This is the case of most widely used ferroelectric, lead zirconate titanate (PZT). The soft compositions possess large electro-mechanical coefficients but also large hysteresis and nonlinearity while the opposite is true for the hard compositions. After fifty years since introduction of these materials, the mechanisms of softening and hardening remain poorly understood. The present study is aimed at a better understanding of the processes leading to hardening and softening of Pb(Zr,Ti)O3 ceramics in order to verify the key principles required for a more universal physical model of hysteresis and nonlinearity. Based on the present state of knowledge, such model should consider domain wall contribution to nonlinear and hysteretic polarization response and at the same time account for hardening and softening of the ferroelectric. For this purpose the well known lead zirconate titanate (PZT) ceramics doped with various concentrations of niobium (soft materials) or iron (hard materials) are chosen as a prototype of the ferroelectric system. The starting hypothesis of the thesis’ approach is that the softening and hardening are a result of electrostatic arrangement of charged defects in the ceramic bulk: the hard materials are characterized by the ordered and the soft by disordered defects. The thesis then develops in detail the idea that hardening-softening transitions in a ferroelectric system may occur under the influence of (i) dopants, depending on their type and concentration, (ii) a cyclically applied electric field, (iii) a thermal treatment, and (iv) time. The transition from microscopic order to microscopic disorder is confirmed experimentally using carefully

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics

Related Articles The impact of the Pb(Zr,Ti)O3-ZnO interface quality on the hysteretic properties of a metal-ferroelectricsemiconductor structure J. Appl. Phys. 112, 104103 (2012) Ferroelectric properties of Pb(Zr,Ti)O3 films under ion-beam induced strain J. Appl. Phys. 112, 104111 (2012) Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions J. Appl. Phys. 112, 104112 (2012) Sin...

متن کامل

Evolution of polarization and space charges in semiconducting ferroelectrics

Related Articles High-temperature ferroelectric behaviors of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with electroactive interlayers J. Appl. Phys. 111, 064506 (2012) The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: Increased ferroelectric ordering and coexisting octahedral tilts J. Appl. Phys. 111, 064109 (2012) The improved polar...

متن کامل

Local symmetry-reduction in tetragonal (La,Fe)-codoped Pb[Zr0.4Ti0.6]O3 piezoelectric ceramics

Ferroelectric Pb[Zr0.4Ti0.6]O3 ceramics codoped with La3+ and Fe3+ at dopant concentrations of 1.0 and 0.5 mol. %, respectively, were investigated by means of multifrequency electron paramagnetic resonance (EPR) spectroscopy. The results prove that iron is incorporated at the [Zr,Ti]-site, acts as an acceptor and favors the creation of charged (Fe′Zr,Ti − V •• O ) • defect dipoles that may give...

متن کامل

Polar lattice vibrations and phase transition dynamics in Pb(Zr1-xTix)O3

Infrared (IR) reflectivity spectra of nominally pure Pb(Zr1-xTix)O3 ceramics with different Ti/Zr concentration (x = 0.42–0.58) were measured and evaluated, along with the time-domain terahertz transmittance spectra in the temperature range 10 K–900 K. The temperature dependence of the low-frequency vibrations, related to Pb atoms, was analyzed in terms of two overdamped modes—a soft mode and a...

متن کامل

Rayleigh type behavior of the Young’s modulus of unpoled ferroelectric ceramics and its dependence on temperature

The dependence on stress of the low frequency Young’s modulus and mechanical losses of unpoled ferroelectric ceramics has been studied as a function of temperature. The Young’s modulus of unpoled Pb(Zr,Ti)O3 ~PZT! showed a Rayleigh type dependence, analogous to the one already described for the longitudinal piezoelectric coefficient. This has been associated to ferroelectric/ ferroelastic domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005